Python Pandas : How to display full Dataframe i.e. print all rows & columns without truncation
In this article we will discuss how to print a big dataframe without any truncation.
Let’s create a very big dataframe with 67 rows and 27 columns i.e.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
# List of Tuples empoyees = [('jack', 34, 'Sydney', 5, 111, 112, 134, 122, 445, 122, 111, 15, 111, 112, 134, 122, 1445, 122, 111, 15, 111, 112, 134, 122, 445, 122, 111), ('Riti', 31, 'Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 27, 211, 212, 234, 222, 2445, 222, 211, 25, 211, 212, 234, 222, 2445, 222, 211, 25, 211, 212, 234, 222, 2445, 222, 211), ('Aadi', 16, 'Tokyo', 39, 311, 312, 334, 322, 3445, 322, 311, 35, 311, 312, 334, 322, 3445, 322, 311, 35,311, 312, 334, 322, 3445, 322, 311), ('Sunil', 41, 'Delhi', 412, 411, 412, 434, 422, 4445, 422, 411, 45, 411, 412, 434, 422, 4445, 422, 411,45, 411, 412, 434, 422, 4445, 422, 411), ('Veena', 33, 'Delhi', 54, 511, 512, 534, 522, 5445, 522, 511, 55, 511, 512, 534, 522, 5445, 522, 511,55, 511, 512, 534, 522, 5445, 522, 511), ('Shaunak', 35, 'Mumbai', 665, 611, 612, 634, 622, 6445, 622, 611, 65, 611, 612, 634, 622, 6445, 622,611, 65, 611, 612, 634, 622, 6445, 622, 611), ('Shaun', 35, 'Colombo', 711, 711, 712, 734, 722, 7445, 722, 711, 75, 711, 712, 734, 722, 7445, 722, 711,75, 711, 712, 734, 722, 7445, 722, 711) ] # Create a DataFrame object empDfObj = pd.DataFrame(empoyees, columns=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P','Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'AA']) # Multiple the number of rows in dataframe by 100 empDfObj = empDfObj.append([empDfObj] * 8, ignore_index=True) |
Confirm the dataframe’s size by checking the number of columns and rows in the dataframe empDFObj,
1 2 |
print('Number of colums in Dataframe : ', len(empDfObj.columns)) print('Number of rows in Dataframe : ', len(empDfObj.index)) |
Output:
1 2 |
Number of columns in Dataframe : 27 Number of rows in Dataframe : 63 |
Now let’s try printing the contents of the dataframe,
1 |
print(empDfObj) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Contents of the Dataframe : A B ... Z AA 0 jack 34 ... 122 111 1 Riti 31 ... 222 211 2 Aadi 16 ... 322 311 3 Sunil 41 ... 422 411 4 Veena 33 ... 522 511 .. ... .. ... ... ... 58 Aadi 16 ... 322 311 59 Sunil 41 ... 422 411 60 Veena 33 ... 522 511 61 Shaunak 35 ... 622 611 62 Shaun 35 ... 722 711 [63 rows x 27 columns] |
By default our complete contents of out dataframe are not printed, output got truncated. It printed only 10 rows (first & last 5 rows) instead of 63 and 12 columns instead of complete 27, all the remaining data is truncated. Now what if we want to print the full dataframe i.e. all 63 rows and 27 columns without any truncation ?
Display full contents of a dataframe
Pandas provides an operation system to customize the behavior & display related stuff. Using this options module we can configure the display to show the complete dataframe instead of truncated one. A function set_option() is provided in pandas to set these kind of options,
1 |
pandas.set_option(pat, value) |
It sets the value of the specified option. Let’s use this to display full contents of a dataframe.
So, to display complete contents of a dataframe without any kind of truncation, we need to set these 4 options,
1 2 3 4 |
pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', -1) |
Let’s understand each of these options one by one.
Setting to display All rows of Dataframe
In pandas when we print a dataframe, it displays at max_rows number of rows. If we have more rows, then it truncates the rows.
1 |
pandas.options.display.max_rows |
This option represents the maximum number of rows that pandas will display while printing a dataframe. Default value of max_rows is 10.
If set to ‘None‘ then it means unlimited i.e. pandas will display all the rows in dataframe. Let’s set it to None while printing the contents of above created dataframe empDfObj,
1 2 3 |
# Default value of display.max_rows is 10 i.e. at max 10 rows will be printed. # Set it None to display all rows in the dataframe pd.set_option('display.max_rows', None) |
Now let’s check the contents of dataframe again,
1 |
print(empDfObj) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
A B ... Z AA 0 jack 34 ... 122 111 1 Riti 31 ... 222 211 2 Aadi 16 ... 322 311 3 Sunil 41 ... 422 411 4 Veena 33 ... 522 511 5 Shaunak 35 ... 622 611 6 Shaun 35 ... 722 711 7 jack 34 ... 122 111 8 Riti 31 ... 222 211 9 Aadi 16 ... 322 311 10 Sunil 41 ... 422 411 11 Veena 33 ... 522 511 12 Shaunak 35 ... 622 611 13 Shaun 35 ... 722 711 14 jack 34 ... 122 111 15 Riti 31 ... 222 211 16 Aadi 16 ... 322 311 17 Sunil 41 ... 422 411 18 Veena 33 ... 522 511 19 Shaunak 35 ... 622 611 20 Shaun 35 ... 722 711 21 jack 34 ... 122 111 22 Riti 31 ... 222 211 23 Aadi 16 ... 322 311 24 Sunil 41 ... 422 411 25 Veena 33 ... 522 511 26 Shaunak 35 ... 622 611 27 Shaun 35 ... 722 711 28 jack 34 ... 122 111 29 Riti 31 ... 222 211 30 Aadi 16 ... 322 311 31 Sunil 41 ... 422 411 32 Veena 33 ... 522 511 33 Shaunak 35 ... 622 611 34 Shaun 35 ... 722 711 35 jack 34 ... 122 111 36 Riti 31 ... 222 211 37 Aadi 16 ... 322 311 38 Sunil 41 ... 422 411 39 Veena 33 ... 522 511 40 Shaunak 35 ... 622 611 41 Shaun 35 ... 722 711 42 jack 34 ... 122 111 43 Riti 31 ... 222 211 44 Aadi 16 ... 322 311 45 Sunil 41 ... 422 411 46 Veena 33 ... 522 511 47 Shaunak 35 ... 622 611 48 Shaun 35 ... 722 711 49 jack 34 ... 122 111 50 Riti 31 ... 222 211 51 Aadi 16 ... 322 311 52 Sunil 41 ... 422 411 53 Veena 33 ... 522 511 54 Shaunak 35 ... 622 611 55 Shaun 35 ... 722 711 56 jack 34 ... 122 111 57 Riti 31 ... 222 211 58 Aadi 16 ... 322 311 59 Sunil 41 ... 422 411 60 Veena 33 ... 522 511 61 Shaunak 35 ... 622 611 62 Shaun 35 ... 722 711 [63 rows x 27 columns] |
Now it printed all the 63 rows. But still columns are truncated. Let’s see to handle that,
Setting to display All Columns in Dataframe
By default only 4 columns were printed instead of all 27. To print all the columns we need to set following option to None i.e.
1 |
display.max_columns |
By setting this to None, we instruct pandas that it should not truncate columns and display all of them. Let’s try it with dataframe created above i.e. empDfObj,
1 2 |
# Set it to None to display all columns in the dataframe pd.set_option('display.max_columns', None) |
Now let’s check the contents of dataframe empDfObj again,
1 |
print(empDfObj) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
A B C D E \ 0 jack 34 Sydney 5 111 1 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 2 Aadi 16 Tokyo 39 311 3 Sunil 41 Delhi 412 411 4 Veena 33 Delhi 54 511 5 Shaunak 35 Mumbai 665 611 6 Shaun 35 Colombo 711 711 7 jack 34 Sydney 5 111 8 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 9 Aadi 16 Tokyo 39 311 10 Sunil 41 Delhi 412 411 11 Veena 33 Delhi 54 511 12 Shaunak 35 Mumbai 665 611 13 Shaun 35 Colombo 711 711 14 jack 34 Sydney 5 111 15 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 16 Aadi 16 Tokyo 39 311 17 Sunil 41 Delhi 412 411 18 Veena 33 Delhi 54 511 19 Shaunak 35 Mumbai 665 611 20 Shaun 35 Colombo 711 711 21 jack 34 Sydney 5 111 22 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 23 Aadi 16 Tokyo 39 311 24 Sunil 41 Delhi 412 411 25 Veena 33 Delhi 54 511 26 Shaunak 35 Mumbai 665 611 27 Shaun 35 Colombo 711 711 28 jack 34 Sydney 5 111 29 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 30 Aadi 16 Tokyo 39 311 31 Sunil 41 Delhi 412 411 32 Veena 33 Delhi 54 511 33 Shaunak 35 Mumbai 665 611 34 Shaun 35 Colombo 711 711 35 jack 34 Sydney 5 111 36 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 37 Aadi 16 Tokyo 39 311 38 Sunil 41 Delhi 412 411 39 Veena 33 Delhi 54 511 40 Shaunak 35 Mumbai 665 611 41 Shaun 35 Colombo 711 711 42 jack 34 Sydney 5 111 43 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 44 Aadi 16 Tokyo 39 311 45 Sunil 41 Delhi 412 411 46 Veena 33 Delhi 54 511 47 Shaunak 35 Mumbai 665 611 48 Shaun 35 Colombo 711 711 49 jack 34 Sydney 5 111 50 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 51 Aadi 16 Tokyo 39 311 52 Sunil 41 Delhi 412 411 53 Veena 33 Delhi 54 511 54 Shaunak 35 Mumbai 665 611 55 Shaun 35 Colombo 711 711 56 jack 34 Sydney 5 111 57 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 58 Aadi 16 Tokyo 39 311 59 Sunil 41 Delhi 412 411 60 Veena 33 Delhi 54 511 61 Shaunak 35 Mumbai 665 611 62 Shaun 35 Colombo 711 711 F G H I J K L M N O P Q R S T \ 0 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 1 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 2 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 3 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 4 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 5 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 6 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 7 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 8 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 9 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 10 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 11 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 12 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 13 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 14 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 15 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 16 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 17 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 18 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 19 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 20 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 21 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 22 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 23 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 24 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 25 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 26 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 27 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 28 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 29 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 30 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 31 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 32 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 33 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 34 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 35 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 36 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 37 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 38 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 39 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 40 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 41 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 42 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 43 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 44 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 45 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 46 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 47 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 48 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 49 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 50 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 51 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 52 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 53 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 54 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 55 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 56 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 57 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 58 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 59 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 60 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 61 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 62 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 U V W X Y Z AA 0 111 112 134 122 445 122 111 1 211 212 234 222 2445 222 211 2 311 312 334 322 3445 322 311 3 411 412 434 422 4445 422 411 4 511 512 534 522 5445 522 511 5 611 612 634 622 6445 622 611 6 711 712 734 722 7445 722 711 7 111 112 134 122 445 122 111 8 211 212 234 222 2445 222 211 9 311 312 334 322 3445 322 311 10 411 412 434 422 4445 422 411 11 511 512 534 522 5445 522 511 12 611 612 634 622 6445 622 611 13 711 712 734 722 7445 722 711 14 111 112 134 122 445 122 111 15 211 212 234 222 2445 222 211 16 311 312 334 322 3445 322 311 17 411 412 434 422 4445 422 411 18 511 512 534 522 5445 522 511 19 611 612 634 622 6445 622 611 20 711 712 734 722 7445 722 711 21 111 112 134 122 445 122 111 22 211 212 234 222 2445 222 211 23 311 312 334 322 3445 322 311 24 411 412 434 422 4445 422 411 25 511 512 534 522 5445 522 511 26 611 612 634 622 6445 622 611 27 711 712 734 722 7445 722 711 28 111 112 134 122 445 122 111 29 211 212 234 222 2445 222 211 30 311 312 334 322 3445 322 311 31 411 412 434 422 4445 422 411 32 511 512 534 522 5445 522 511 33 611 612 634 622 6445 622 611 34 711 712 734 722 7445 722 711 35 111 112 134 122 445 122 111 36 211 212 234 222 2445 222 211 37 311 312 334 322 3445 322 311 38 411 412 434 422 4445 422 411 39 511 512 534 522 5445 522 511 40 611 612 634 622 6445 622 611 41 711 712 734 722 7445 722 711 42 111 112 134 122 445 122 111 43 211 212 234 222 2445 222 211 44 311 312 334 322 3445 322 311 45 411 412 434 422 4445 422 411 46 511 512 534 522 5445 522 511 47 611 612 634 622 6445 622 611 48 711 712 734 722 7445 722 711 49 111 112 134 122 445 122 111 50 211 212 234 222 2445 222 211 51 311 312 334 322 3445 322 311 52 411 412 434 422 4445 422 411 53 511 512 534 522 5445 522 511 54 611 612 634 622 6445 622 611 55 711 712 734 722 7445 722 711 56 111 112 134 122 445 122 111 57 211 212 234 222 2445 222 211 58 311 312 334 322 3445 322 311 59 411 412 434 422 4445 422 411 60 511 512 534 522 5445 522 511 61 611 612 634 622 6445 622 611 62 711 712 734 722 7445 722 711 |
Now it printed all the 27 columns. Although all columns were printed, but in wrapped manner. That’s because pandas will correctly auto-detect the width of the terminal and switch to a wrapped format in case all columns would not fit in same line.
Now let’s see how to fit all columns in same line,
Setting to display Dataframe with full width i.e. all columns in a line
To fit all the columns in same line we need to maximize the terminal width. That can be done by using following option,
1 |
display.width |
If set to None and pandas will correctly auto-detect the width of dataframe and will display all columns in single line. Let’s try it with dataframe created above i.e. empDfObj,
1 2 |
# Width of the display in characters. If set to None and pandas will correctly auto-detect the width. pd.set_option('display.width', None) |
Now let’s check the contents of dataframe empDfObj again,
1 |
print(empDfObj) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA 0 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 1 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 2 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 3 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 4 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 5 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 6 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 7 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 8 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 9 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 10 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 11 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 12 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 13 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 14 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 15 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 16 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 17 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 18 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 19 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 20 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 21 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 22 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 23 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 24 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 25 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 26 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 27 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 28 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 29 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 30 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 31 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 32 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 33 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 34 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 35 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 36 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 37 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 38 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 39 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 40 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 41 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 42 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 43 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 44 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 45 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 46 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 47 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 48 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 49 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 50 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 51 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 52 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 53 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 54 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 55 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 56 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 57 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 58 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 59 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 60 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 61 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 62 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 |
Now it printed all the 27 columns in the single line. But, it truncated the contents of column ‘ C’. Let’s see how to handle that,
Setting to display Dataframe by maximizing column width
We can use the option,
1 |
display.max_colwidth |
It is set to maximize the width in characters of a column in the dataframe while printing. When set to None, pandas will auto detect the max size of column and print contents of that column without truncated the contents. Let’s try it with dataframe created above i.e. empDfObj,
1 2 |
# The maximum width in characters of a column in the repr of a pandas data structure pd.set_option('display.max_colwidth', -1) |
Now let’s check the contents of dataframe empDfObj again,
1 |
print(empDfObj) |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA 0 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 1 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 2 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 3 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 4 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 5 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 6 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 7 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 8 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 9 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 10 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 11 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 12 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 13 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 14 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 15 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 16 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 17 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 18 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 19 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 20 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 21 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 22 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 23 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 24 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 25 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 26 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 27 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 28 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 29 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 30 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 31 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 32 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 33 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 34 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 35 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 36 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 37 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 38 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 39 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 40 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 41 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 42 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 43 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 44 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 45 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 46 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 47 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 48 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 49 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 50 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 51 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 52 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 53 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 54 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 55 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 56 jack 34 Sydney 5 111 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 111 112 134 122 445 122 111 57 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 27 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 58 Aadi 16 Tokyo 39 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 59 Sunil 41 Delhi 412 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 60 Veena 33 Delhi 54 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 61 Shaunak 35 Mumbai 665 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 62 Shaun 35 Colombo 711 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 |
Now it printed complete contents of column ‘C’ without truncation.
So, to print basically to print all the contents of a dataframe, use following settings,
1 2 3 4 |
pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', -1) |
Complete example is as follows,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import pandas as pd import numpy as np def main(): # List of Tuples empoyees = [('jack', 34, 'Sydney', 5, 111, 112, 134, 122, 445, 122, 111, 15, 111, 112, 134, 122, 1445, 122, 111, 15, 111, 112, 134, 122, 445, 122, 111), ('Riti', 31, 'Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 27, 211, 212, 234, 222, 2445, 222, 211, 25, 211, 212, 234, 222, 2445, 222, 211, 25, 211, 212, 234, 222, 2445, 222, 211), ('Aadi', 16, 'Tokyo', 39, 311, 312, 334, 322, 3445, 322, 311, 35, 311, 312, 334, 322, 3445, 322, 311, 35,311, 312, 334, 322, 3445, 322, 311), ('Sunil', 41, 'Delhi', 412, 411, 412, 434, 422, 4445, 422, 411, 45, 411, 412, 434, 422, 4445, 422, 411,45, 411, 412, 434, 422, 4445, 422, 411), ('Veena', 33, 'Delhi', 54, 511, 512, 534, 522, 5445, 522, 511, 55, 511, 512, 534, 522, 5445, 522, 511,55, 511, 512, 534, 522, 5445, 522, 511), ('Shaunak', 35, 'Mumbai', 665, 611, 612, 634, 622, 6445, 622, 611, 65, 611, 612, 634, 622, 6445, 622,611, 65, 611, 612, 634, 622, 6445, 622, 611), ('Shaun', 35, 'Colombo', 711, 711, 712, 734, 722, 7445, 722, 711, 75, 711, 712, 734, 722, 7445, 722, 711,75, 711, 712, 734, 722, 7445, 722, 711) ] # Create a DataFrame object empDfObj = pd.DataFrame(empoyees, columns=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P','Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'AA']) # Multiple the number of rows in dataframe by 100 empDfObj = empDfObj.append([empDfObj] * 8, ignore_index=True) print('Number of columns in Dataframe : ', len(empDfObj.columns)) print('Number of rows in Dataframe : ', len(empDfObj.index)) print("Contents of the Dataframe : ") print(empDfObj) print('**** Display All rows in Dataframe ****') # Default value of display.max_rows is 10 i.e. at max 10 rows will be printed. # Set it None to display all rows in the dataframe pd.set_option('display.max_rows', None) print("Contents of the Dataframe : ") print(empDfObj) print('**** Display All Columns in Dataframe ****') # Set it to None to display all columns in the dataframe pd.set_option('display.max_columns', None) print("Contents of the Dataframe : ") print(empDfObj) print('**** Display Dataframe with full width i.e. all columns in a line ****') # Width of the display in characters. If set to None and pandas will correctly auto-detect the width. pd.set_option('display.width', None) print("Contents of the Dataframe : ") print(empDfObj) print('**** Display Dataframe by maximizing column width ****') # The maximum width in characters of a column in the repr of a pandas data structure pd.set_option('display.max_colwidth', -1) print("Contents of the Dataframe : ") print(empDfObj) print('-- Display full Dataframe without truncation') pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', -1) if __name__ == '__main__': main() |
Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
Number of columns in Dataframe : 27 Number of rows in Dataframe : 63 Contents of the Dataframe : A B ... Z AA 0 jack 34 ... 122 111 1 Riti 31 ... 222 211 2 Aadi 16 ... 322 311 3 Sunil 41 ... 422 411 4 Veena 33 ... 522 511 .. ... .. ... ... ... 58 Aadi 16 ... 322 311 59 Sunil 41 ... 422 411 60 Veena 33 ... 522 511 61 Shaunak 35 ... 622 611 62 Shaun 35 ... 722 711 [63 rows x 27 columns] --Display All rows in Dataframe Contents of the Dataframe : A B ... Z AA 0 jack 34 ... 122 111 1 Riti 31 ... 222 211 2 Aadi 16 ... 322 311 3 Sunil 41 ... 422 411 4 Veena 33 ... 522 511 5 Shaunak 35 ... 622 611 6 Shaun 35 ... 722 711 7 jack 34 ... 122 111 8 Riti 31 ... 222 211 9 Aadi 16 ... 322 311 10 Sunil 41 ... 422 411 11 Veena 33 ... 522 511 12 Shaunak 35 ... 622 611 13 Shaun 35 ... 722 711 14 jack 34 ... 122 111 15 Riti 31 ... 222 211 16 Aadi 16 ... 322 311 17 Sunil 41 ... 422 411 18 Veena 33 ... 522 511 19 Shaunak 35 ... 622 611 20 Shaun 35 ... 722 711 21 jack 34 ... 122 111 22 Riti 31 ... 222 211 23 Aadi 16 ... 322 311 24 Sunil 41 ... 422 411 25 Veena 33 ... 522 511 26 Shaunak 35 ... 622 611 27 Shaun 35 ... 722 711 28 jack 34 ... 122 111 29 Riti 31 ... 222 211 30 Aadi 16 ... 322 311 31 Sunil 41 ... 422 411 32 Veena 33 ... 522 511 33 Shaunak 35 ... 622 611 34 Shaun 35 ... 722 711 35 jack 34 ... 122 111 36 Riti 31 ... 222 211 37 Aadi 16 ... 322 311 38 Sunil 41 ... 422 411 39 Veena 33 ... 522 511 40 Shaunak 35 ... 622 611 41 Shaun 35 ... 722 711 42 jack 34 ... 122 111 43 Riti 31 ... 222 211 44 Aadi 16 ... 322 311 45 Sunil 41 ... 422 411 46 Veena 33 ... 522 511 47 Shaunak 35 ... 622 611 48 Shaun 35 ... 722 711 49 jack 34 ... 122 111 50 Riti 31 ... 222 211 51 Aadi 16 ... 322 311 52 Sunil 41 ... 422 411 53 Veena 33 ... 522 511 54 Shaunak 35 ... 622 611 55 Shaun 35 ... 722 711 56 jack 34 ... 122 111 57 Riti 31 ... 222 211 58 Aadi 16 ... 322 311 59 Sunil 41 ... 422 411 60 Veena 33 ... 522 511 61 Shaunak 35 ... 622 611 62 Shaun 35 ... 722 711 [63 rows x 27 columns] --Display All Columns in Dataframe Contents of the Dataframe : A B C D E \ 0 jack 34 Sydney 5 111 1 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 2 Aadi 16 Tokyo 39 311 3 Sunil 41 Delhi 412 411 4 Veena 33 Delhi 54 511 5 Shaunak 35 Mumbai 665 611 6 Shaun 35 Colombo 711 711 7 jack 34 Sydney 5 111 8 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 9 Aadi 16 Tokyo 39 311 10 Sunil 41 Delhi 412 411 11 Veena 33 Delhi 54 511 12 Shaunak 35 Mumbai 665 611 13 Shaun 35 Colombo 711 711 14 jack 34 Sydney 5 111 15 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 16 Aadi 16 Tokyo 39 311 17 Sunil 41 Delhi 412 411 18 Veena 33 Delhi 54 511 19 Shaunak 35 Mumbai 665 611 20 Shaun 35 Colombo 711 711 21 jack 34 Sydney 5 111 22 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 23 Aadi 16 Tokyo 39 311 24 Sunil 41 Delhi 412 411 25 Veena 33 Delhi 54 511 26 Shaunak 35 Mumbai 665 611 27 Shaun 35 Colombo 711 711 28 jack 34 Sydney 5 111 29 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 30 Aadi 16 Tokyo 39 311 31 Sunil 41 Delhi 412 411 32 Veena 33 Delhi 54 511 33 Shaunak 35 Mumbai 665 611 34 Shaun 35 Colombo 711 711 35 jack 34 Sydney 5 111 36 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 37 Aadi 16 Tokyo 39 311 38 Sunil 41 Delhi 412 411 39 Veena 33 Delhi 54 511 40 Shaunak 35 Mumbai 665 611 41 Shaun 35 Colombo 711 711 42 jack 34 Sydney 5 111 43 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 44 Aadi 16 Tokyo 39 311 45 Sunil 41 Delhi 412 411 46 Veena 33 Delhi 54 511 47 Shaunak 35 Mumbai 665 611 48 Shaun 35 Colombo 711 711 49 jack 34 Sydney 5 111 50 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 51 Aadi 16 Tokyo 39 311 52 Sunil 41 Delhi 412 411 53 Veena 33 Delhi 54 511 54 Shaunak 35 Mumbai 665 611 55 Shaun 35 Colombo 711 711 56 jack 34 Sydney 5 111 57 Riti 31 Delhiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa... 27 211 58 Aadi 16 Tokyo 39 311 59 Sunil 41 Delhi 412 411 60 Veena 33 Delhi 54 511 61 Shaunak 35 Mumbai 665 611 62 Shaun 35 Colombo 711 711 F G H I J K L M N O P Q R S T \ 0 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 1 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 2 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 3 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 4 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 5 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 6 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 7 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 8 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 9 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 10 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 11 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 12 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 13 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 14 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 15 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 16 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 17 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 18 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 19 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 20 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 21 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 22 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 23 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 24 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 25 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 26 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 27 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 28 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 29 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 30 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 31 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 32 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 33 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 34 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 35 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 36 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 37 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 38 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 39 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 40 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 41 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 42 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 43 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 44 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 45 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 46 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 47 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 48 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 49 112 134 122 445 122 111 15 111 112 134 122 1445 122 111 15 50 212 234 222 2445 222 211 25 211 212 234 222 2445 222 211 25 51 312 334 322 3445 322 311 35 311 312 334 322 3445 322 311 35 52 412 434 422 4445 422 411 45 411 412 434 422 4445 422 411 45 53 512 534 522 5445 522 511 55 511 512 534 522 5445 522 511 55 54 612 634 622 6445 622 611 65 611 612 634 622 6445 622 611 65 55 712 734 722 7445 722 711 75 711 712 734 722 7445 722 711 75 56 112 134 122 445 122 |