Pandas Tutorial Part #13 – Iterate over Rows & Columns of DataFrame

This tutorial will discuss how to iterate over rows or columns of a DataFrame by index positions or label names.

Table Of Contents

First, we will create a DataFrame,

import pandas as pd

# List of Tuples
empoyees = [(11, 'jack', 34, 'Sydney', 5) ,
            (12, 'Riti', 31, 'Delhi' , 7) ,
            (13, 'Aadi', 16, 'New York', 11) ,
            (14, 'Mohit', 32,'Delhi' , 15) ,
            (15, 'Veena', 33, 'Delhi' , 4) ,
            (16, 'Shaunak', 35, 'Mumbai', 5 ),
            (17, 'Shaun', 35, 'Colombo', 11)]

# Create a DataFrame object
df = pd.DataFrame(  empoyees,
                    columns=['ID', 'Name', 'Age', 'City', 'Experience'],
                    index=['a', 'b', 'c', 'd', 'e', 'f', 'h'])

# Display the DataFrame
print(df)

Output:

   ID     Name  Age      City  Experience
a  11     jack   34    Sydney           5
b  12     Riti   31     Delhi           7
c  13     Aadi   16  New York          11
d  14    Mohit   32     Delhi          15
e  15    Veena   33     Delhi           4
f  16  Shaunak   35    Mumbai           5
h  17    Shaun   35   Colombo          11

This DataFrame has seven rows and five columns. Now let’s see how to iterate over this DataFrame.

Advertisements

Iterate over rows of a DataFrame by index labels

In Pandas, the DataFrame class provides a method iterrows(), it yields an iterator that can be used to loop over all the rows of a DataFrame. For each of the rows, it returns a tuple, which contains the index label and row contents as a Series object. From the Series object, we can use the values attribute to get the row values as a NumPy Array.

Let’s iterate over all the rows of the above-created dataframe using iterrows() i.e.

# Iterate over rows of DataFrame by Index Labels
for (index_label, row_series) in df.iterrows():
    print('Row Index label : ', index_label)
    print('Row Content as NumPy Array: ', row_series.values)

Output:

Row Index label :  a
Row Content as NumPy Array:  [11 'jack' 34 'Sydney' 5]
Row Index label :  b
Row Content as NumPy Array:  [12 'Riti' 31 'Delhi' 7]
Row Index label :  c
Row Content as NumPy Array:  [13 'Aadi' 16 'New York' 11]
Row Index label :  d
Row Content as NumPy Array:  [14 'Mohit' 32 'Delhi' 15]
Row Index label :  e
Row Content as NumPy Array:  [15 'Veena' 33 'Delhi' 4]
Row Index label :  f
Row Content as NumPy Array:  [16 'Shaunak' 35 'Mumbai' 5]
Row Index label :  h
Row Content as NumPy Array:  [17 'Shaun' 35 'Colombo' 11]

Here, we iterated over all the rows of the DataFrame by row index labels.

Iterate over rows of a DataFrame by index Positions

Get the count of the number of rows in the DataFrame. Then loop through 0 to N, where N is the number of rows in the DataFrame. During iteration, access each row as a Series object by the index position using iloc[]. From the Series object, use the values attribute to get the row values as a NumPy Array.

# Iterate over rows of DataFrame by index positions
for i in range(0, df.shape[0]):
    print('Row Index Position : ', i)
    # Get row contents as NumPy Array from Series
    rowContent = df.iloc[i].values
    print('Row Content as NumPy Array: ', rowContent)

Output:

Row Index Position :  0
Row Content as NumPy Array:  [11 'jack' 34 'Sydney' 5]
Row Index Position :  1
Row Content as NumPy Array:  [12 'Riti' 31 'Delhi' 7]
Row Index Position :  2
Row Content as NumPy Array:  [13 'Aadi' 16 'New York' 11]
Row Index Position :  3
Row Content as NumPy Array:  [14 'Mohit' 32 'Delhi' 15]
Row Index Position :  4
Row Content as NumPy Array:  [15 'Veena' 33 'Delhi' 4]
Row Index Position :  5
Row Content as NumPy Array:  [16 'Shaunak' 35 'Mumbai' 5]
Row Index Position :  6
Row Content as NumPy Array:  [17 'Shaun' 35 'Colombo' 11]

Here, we looped through all the rows of the DataFrame by the index positions.

Iterate over columns of DataFrame using Column Names

In Pandas, the Dataframe provides attribute columns, which give a sequence of column names. We can iterate over these column names, and for each column label, we can select the column contents as a Series object using the subscript operator ( [] ). From the Series object, use the values attribute to get the column values as a NumPy Array. For example,

# Iterate over the sequence of column names
for column in df.columns:
    # Select column contents by column name using [] operator
    columnSeriesObj = df[column]
    print('Colunm Name : ', column)
    print('Column Contents as NumPy Array: ', columnSeriesObj.values)

Output:

Colunm Name :  ID
Column Contents as NumPy Array:  [11 12 13 14 15 16 17]
Colunm Name :  Name
Column Contents as NumPy Array:  ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun']
Colunm Name :  Age
Column Contents as NumPy Array:  [34 31 16 32 33 35 35]
Colunm Name :  City
Column Contents as NumPy Array:  ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo']
Colunm Name :  Experience
Column Contents as NumPy Array:  [ 5  7 11 15  4  5 11]

Here, we looped through all the columns of the DataFrame by the column names.

Iterate over columns of DataFrame by column numbers

To iterate over the columns of a DataFrame by column numbers,

  • Get the count of total columns in the DataFrame.
  • Loop over 0 to N, where N stands for the count of the number of columns
  • Select each column by index position/number during iteration using iloc[].

Let’s see how to iterate over all columns of a DataFrame by column numbers,

# Iterate over columns of DataFrame by index positions
for i in range(0, df.shape[1]):
    print('Colunm Number/Position: ', i)
    # Get column contents as NumPy Array
    columnContent = df.iloc[:, i].values
    print('Column contents: ', columnContent)

Output:

Colunm Number/Position:  0
Column contents:  [11 12 13 14 15 16 17]
Colunm Number/Position:  1
Column contents:  ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun']
Colunm Number/Position:  2
Column contents:  [34 31 16 32 33 35 35]
Colunm Number/Position:  3
Column contents:  ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo']
Colunm Number/Position:  4
Column contents:  [ 5  7 11 15  4  5 11]

Here, we looped through all the columns of the DataFrame by the column index numbers.

Summary:

We learned about the different ways to iterate over all rows or columns of a DataFrame by label names or by index positions.

Pandas Tutorials -Learn Data Analysis with Python

   

Are you looking to make a career in Data Science with Python?

Data Science is the future, and the future is here now. Data Scientists are now the most sought-after professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.

Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.

Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.

Join a LinkedIn Community of Python Developers

Leave a Comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll to Top