This tutorial will discuss how to iterate over rows or columns of a DataFrame by index positions or label names.
Table Of Contents
 Iterate over rows of a DataFrame by index labels
 Iterate over rows of a DataFrame by index Positions
 Iterate over columns of DataFrame using Column Names
 Iterate over columns of DataFrame by column numbers
First, we will create a DataFrame,
import pandas as pd # List of Tuples empoyees = [(11, 'jack', 34, 'Sydney', 5) , (12, 'Riti', 31, 'Delhi' , 7) , (13, 'Aadi', 16, 'New York', 11) , (14, 'Mohit', 32,'Delhi' , 15) , (15, 'Veena', 33, 'Delhi' , 4) , (16, 'Shaunak', 35, 'Mumbai', 5 ), (17, 'Shaun', 35, 'Colombo', 11)] # Create a DataFrame object df = pd.DataFrame( empoyees, columns=['ID', 'Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'h']) # Display the DataFrame print(df)
Output:
ID Name Age City Experience a 11 jack 34 Sydney 5 b 12 Riti 31 Delhi 7 c 13 Aadi 16 New York 11 d 14 Mohit 32 Delhi 15 e 15 Veena 33 Delhi 4 f 16 Shaunak 35 Mumbai 5 h 17 Shaun 35 Colombo 11
This DataFrame has seven rows and five columns. Now let’s see how to iterate over this DataFrame.
Iterate over rows of a DataFrame by index labels
In Pandas, the DataFrame class provides a method iterrows(), it yields an iterator that can be used to loop over all the rows of a DataFrame. For each of the rows, it returns a tuple, which contains the index label and row contents as a Series object. From the Series object, we can use the values attribute to get the row values as a NumPy Array.
Let’s iterate over all the rows of the abovecreated dataframe using iterrows() i.e.
# Iterate over rows of DataFrame by Index Labels for (index_label, row_series) in df.iterrows(): print('Row Index label : ', index_label) print('Row Content as NumPy Array: ', row_series.values)
Output:
Row Index label : a Row Content as NumPy Array: [11 'jack' 34 'Sydney' 5] Row Index label : b Row Content as NumPy Array: [12 'Riti' 31 'Delhi' 7] Row Index label : c Row Content as NumPy Array: [13 'Aadi' 16 'New York' 11] Row Index label : d Row Content as NumPy Array: [14 'Mohit' 32 'Delhi' 15] Row Index label : e Row Content as NumPy Array: [15 'Veena' 33 'Delhi' 4] Row Index label : f Row Content as NumPy Array: [16 'Shaunak' 35 'Mumbai' 5] Row Index label : h Row Content as NumPy Array: [17 'Shaun' 35 'Colombo' 11]
Here, we iterated over all the rows of the DataFrame by row index labels.
Iterate over rows of a DataFrame by index Positions
Get the count of the number of rows in the DataFrame. Then loop through 0 to N, where N is the number of rows in the DataFrame. During iteration, access each row as a Series object by the index position using iloc[]. From the Series object, use the values attribute to get the row values as a NumPy Array.
# Iterate over rows of DataFrame by index positions for i in range(0, df.shape[0]): print('Row Index Position : ', i) # Get row contents as NumPy Array from Series rowContent = df.iloc[i].values print('Row Content as NumPy Array: ', rowContent)
Output:
Row Index Position : 0 Row Content as NumPy Array: [11 'jack' 34 'Sydney' 5] Row Index Position : 1 Row Content as NumPy Array: [12 'Riti' 31 'Delhi' 7] Row Index Position : 2 Row Content as NumPy Array: [13 'Aadi' 16 'New York' 11] Row Index Position : 3 Row Content as NumPy Array: [14 'Mohit' 32 'Delhi' 15] Row Index Position : 4 Row Content as NumPy Array: [15 'Veena' 33 'Delhi' 4] Row Index Position : 5 Row Content as NumPy Array: [16 'Shaunak' 35 'Mumbai' 5] Row Index Position : 6 Row Content as NumPy Array: [17 'Shaun' 35 'Colombo' 11]
Here, we looped through all the rows of the DataFrame by the index positions.
Iterate over columns of DataFrame using Column Names
In Pandas, the Dataframe provides attribute columns, which give a sequence of column names. We can iterate over these column names, and for each column label, we can select the column contents as a Series object using the subscript operator ( [] ). From the Series object, use the values attribute to get the column values as a NumPy Array. For example,
# Iterate over the sequence of column names for column in df.columns: # Select column contents by column name using [] operator columnSeriesObj = df[column] print('Colunm Name : ', column) print('Column Contents as NumPy Array: ', columnSeriesObj.values)
Output:
Colunm Name : ID Column Contents as NumPy Array: [11 12 13 14 15 16 17] Colunm Name : Name Column Contents as NumPy Array: ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun'] Colunm Name : Age Column Contents as NumPy Array: [34 31 16 32 33 35 35] Colunm Name : City Column Contents as NumPy Array: ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo'] Colunm Name : Experience Column Contents as NumPy Array: [ 5 7 11 15 4 5 11]
Here, we looped through all the columns of the DataFrame by the column names.
Iterate over columns of DataFrame by column numbers
To iterate over the columns of a DataFrame by column numbers,
 Get the count of total columns in the DataFrame.
 Loop over 0 to N, where N stands for the count of the number of columns
 Select each column by index position/number during iteration using iloc[].
Let’s see how to iterate over all columns of a DataFrame by column numbers,
# Iterate over columns of DataFrame by index positions for i in range(0, df.shape[1]): print('Colunm Number/Position: ', i) # Get column contents as NumPy Array columnContent = df.iloc[:, i].values print('Column contents: ', columnContent)
Output:
Colunm Number/Position: 0 Column contents: [11 12 13 14 15 16 17] Colunm Number/Position: 1 Column contents: ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun'] Colunm Number/Position: 2 Column contents: [34 31 16 32 33 35 35] Colunm Number/Position: 3 Column contents: ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo'] Colunm Number/Position: 4 Column contents: [ 5 7 11 15 4 5 11]
Here, we looped through all the columns of the DataFrame by the column index numbers.
Summary:
We learned about the different ways to iterate over all rows or columns of a DataFrame by label names or by index positions.
Pandas Tutorials Learn Data Analysis with Python

Pandas Tutorial Part #1  Introduction to Data Analysis with Python

Pandas Tutorial Part #2  Basics of Pandas Series

Pandas Tutorial Part #3  Get & Set Series values

Pandas Tutorial Part #4  Attributes & methods of Pandas Series

Pandas Tutorial Part #5  Add or Remove Pandas Series elements

Pandas Tutorial Part #6  Introduction to DataFrame

Pandas Tutorial Part #7  DataFrame.loc[]  Select Rows / Columns by Indexing

Pandas Tutorial Part #8  DataFrame.iloc[]  Select Rows / Columns by Label Names

Pandas Tutorial Part #9  Filter DataFrame Rows

Pandas Tutorial Part #10  Add/Remove DataFrame Rows & Columns

Pandas Tutorial Part #11  DataFrame attributes & methods

Pandas Tutorial Part #12  Handling Missing Data or NaN values

Pandas Tutorial Part #13  Iterate over Rows & Columns of DataFrame

Pandas Tutorial Part #14  Sorting DataFrame by Rows or Columns

Pandas Tutorial Part #15  Merging or Concatenating DataFrames

Pandas Tutorial Part #16  DataFrame GroupBy explained with examples
Are you looking to make a career in Data Science with Python?
Data Science is the future, and the future is here now. Data Scientists are now the most soughtafter professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.
Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.
Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.