This tutorial will discuss how to iterate over rows or columns of a DataFrame by index positions or label names.

**Table Of Contents**

- Iterate over rows of a DataFrame by index labels
- Iterate over rows of a DataFrame by index Positions
- Iterate over columns of DataFrame using Column Names
- Iterate over columns of DataFrame by column numbers

First, we will create a DataFrame,

import pandas as pd # List of Tuples empoyees = [(11, 'jack', 34, 'Sydney', 5) , (12, 'Riti', 31, 'Delhi' , 7) , (13, 'Aadi', 16, 'New York', 11) , (14, 'Mohit', 32,'Delhi' , 15) , (15, 'Veena', 33, 'Delhi' , 4) , (16, 'Shaunak', 35, 'Mumbai', 5 ), (17, 'Shaun', 35, 'Colombo', 11)] # Create a DataFrame object df = pd.DataFrame( empoyees, columns=['ID', 'Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'h']) # Display the DataFrame print(df)

**Output:**

ID Name Age City Experience a 11 jack 34 Sydney 5 b 12 Riti 31 Delhi 7 c 13 Aadi 16 New York 11 d 14 Mohit 32 Delhi 15 e 15 Veena 33 Delhi 4 f 16 Shaunak 35 Mumbai 5 h 17 Shaun 35 Colombo 11

This DataFrame has seven rows and five columns. Now let’s see how to iterate over this DataFrame.

**Advertisements**

## Iterate over rows of a DataFrame by index labels

In Pandas, the DataFrame class provides a method iterrows(), it yields an iterator that can be used to loop over all the rows of a DataFrame. For each of the rows, it returns a tuple, which contains the index label and row contents as a Series object. From the Series object, we can use the ** values **attribute to get the row values as a NumPy Array.

Let’s iterate over all the rows of the above-created dataframe using iterrows() i.e.

# Iterate over rows of DataFrame by Index Labels for (index_label, row_series) in df.iterrows(): print('Row Index label : ', index_label) print('Row Content as NumPy Array: ', row_series.values)

**Output:**

Row Index label : a Row Content as NumPy Array: [11 'jack' 34 'Sydney' 5] Row Index label : b Row Content as NumPy Array: [12 'Riti' 31 'Delhi' 7] Row Index label : c Row Content as NumPy Array: [13 'Aadi' 16 'New York' 11] Row Index label : d Row Content as NumPy Array: [14 'Mohit' 32 'Delhi' 15] Row Index label : e Row Content as NumPy Array: [15 'Veena' 33 'Delhi' 4] Row Index label : f Row Content as NumPy Array: [16 'Shaunak' 35 'Mumbai' 5] Row Index label : h Row Content as NumPy Array: [17 'Shaun' 35 'Colombo' 11]

Here, we iterated over all the rows of the DataFrame by row index labels.

## Iterate over rows of a DataFrame by index Positions

Get the count of the number of rows in the DataFrame. Then loop through 0 to N, where N is the number of rows in the DataFrame. During iteration, access each row as a Series object by the index position using iloc[]. From the Series object, use the ** values **attribute to get the row values as a NumPy Array.

# Iterate over rows of DataFrame by index positions for i in range(0, df.shape[0]): print('Row Index Position : ', i) # Get row contents as NumPy Array from Series rowContent = df.iloc[i].values print('Row Content as NumPy Array: ', rowContent)

**Output:**

Row Index Position : 0 Row Content as NumPy Array: [11 'jack' 34 'Sydney' 5] Row Index Position : 1 Row Content as NumPy Array: [12 'Riti' 31 'Delhi' 7] Row Index Position : 2 Row Content as NumPy Array: [13 'Aadi' 16 'New York' 11] Row Index Position : 3 Row Content as NumPy Array: [14 'Mohit' 32 'Delhi' 15] Row Index Position : 4 Row Content as NumPy Array: [15 'Veena' 33 'Delhi' 4] Row Index Position : 5 Row Content as NumPy Array: [16 'Shaunak' 35 'Mumbai' 5] Row Index Position : 6 Row Content as NumPy Array: [17 'Shaun' 35 'Colombo' 11]

Here, we looped through all the rows of the DataFrame by the index positions.

## Iterate over columns of DataFrame using Column Names

In Pandas, the Dataframe provides attribute columns, which give a sequence of column names. We can iterate over these column names, and for each column label, we can select the column contents as a Series object using the subscript operator ( [] ). From the Series object, use the ** values **attribute to get the column values as a NumPy Array. For example,

# Iterate over the sequence of column names for column in df.columns: # Select column contents by column name using [] operator columnSeriesObj = df[column] print('Colunm Name : ', column) print('Column Contents as NumPy Array: ', columnSeriesObj.values)

Output:

Colunm Name : ID Column Contents as NumPy Array: [11 12 13 14 15 16 17] Colunm Name : Name Column Contents as NumPy Array: ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun'] Colunm Name : Age Column Contents as NumPy Array: [34 31 16 32 33 35 35] Colunm Name : City Column Contents as NumPy Array: ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo'] Colunm Name : Experience Column Contents as NumPy Array: [ 5 7 11 15 4 5 11]

Here, we looped through all the columns of the DataFrame by the column names.

## Iterate over columns of DataFrame by column numbers

To iterate over the columns of a DataFrame by column numbers,

- Get the count of total columns in the DataFrame.
- Loop over 0 to N, where N stands for the count of the number of columns
- Select each column by index position/number during iteration using iloc[].

Let’s see how to iterate over all columns of a DataFrame by column numbers,

# Iterate over columns of DataFrame by index positions for i in range(0, df.shape[1]): print('Colunm Number/Position: ', i) # Get column contents as NumPy Array columnContent = df.iloc[:, i].values print('Column contents: ', columnContent)

**Output:**

Colunm Number/Position: 0 Column contents: [11 12 13 14 15 16 17] Colunm Number/Position: 1 Column contents: ['jack' 'Riti' 'Aadi' 'Mohit' 'Veena' 'Shaunak' 'Shaun'] Colunm Number/Position: 2 Column contents: [34 31 16 32 33 35 35] Colunm Number/Position: 3 Column contents: ['Sydney' 'Delhi' 'New York' 'Delhi' 'Delhi' 'Mumbai' 'Colombo'] Colunm Number/Position: 4 Column contents: [ 5 7 11 15 4 5 11]

Here, we looped through all the columns of the DataFrame by the column index numbers.

**Summary:**

We learned about the different ways to iterate over all rows or columns of a DataFrame by label names or by index positions.

**Advertisements**

Thanks for reading.