This article will discuss how to change a cell value in a CSV file using the Pandas library in Python.
Table Of Contents
- Change cell value of a CSV file by row/column labels
- Change cell value of a CSV file by row/column number
Suppose we have a CSV file like this,
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,48,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,43,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
We can modify this CSV file using Pandas by changing some cell values. For that, we need to import a CSV file to a DataFrame first. Then we can change cell values by selecting them either by row/column labels or by index positions.
For example, we can change the value of the cell at row ‘c’ and column ‘Age’ to 56 i.e.
Frequently Asked:
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,56,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,43,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
or we can change the value of the cell at row number 5 and column number 2 to 55 i.e.
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,56,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,55,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
Let’s see how to do that.
Change cell value of a CSV file by row/column labels
First, we need to import the CSV file to a Pandas DataFrame using the read_csv() function. Then we can change the value of a cell by using the loc[] attribute. In the loc attribute, we need to pass the row index label and column name like this,
df.loc[row_label, column name]
It returns a reference of the specified cell from DataFrame. We can assign a new value to it, and the cell value in DataFrame will be modified i.e
Latest Python - Video Tutorial
df.loc[row_label, column name] = new_value
Once the DataFrame is modified, we can save the DataFrame to the same CSV file using the to_csv() function, and the cell value in the CSV file will be updated.
Let’s see the practical example,
Contents of the CSV file employees.csv file are,
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,48,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,43,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
Now let’s change the value of a cell in row ‘c’ and column ‘Age’ to 56,
import pandas as pd df = pd.read_csv('employees.csv', index_col='Id') # Set cell value at row 'c' and column 'Age' df.loc['c', 'Age'] = 56 # Write DataFrame to CSV file df.to_csv('employees.csv')
The content of the employees.csv file mist be like this now,
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,56,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,43,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
The value of cell at [‘c’, ‘Age’] is now 56.
Change cell value of a CSV file by row/column number
First, we will import the CSV file to a Pandas DataFrame using the read_csv() function. Then we can change the value of a cell by row and column number using the iloc[] attribute. In the iloc[] attribute, we need to pass the row and column index number like this,
df.iloc[row_index, column_index]
As the index number starts from 0, to select the cell at Nth row and Mth column, pass N-1 and M-1. It returns a reference of the specified cell from DataFrame. We can assign a new value to it, and the selected cell value in DataFrame will be modified i.e
df.iloc[N-1, M-1] = new_value
It changes the value of the cell at row number N and column number M. Once the DataFrame is modified, we can save the DataFrame to the same CSV file using the to_csv() function cell value in the CSV file will be updated.
Let’s see the practical example,
Contents of the CSV file employees.csv file are,
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,48,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,43,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
Now let’s change the cell value at row number 5 and column number 2. So we need to row index value 4 and column index number 1 in the iloc[] i.e.
import pandas as pd df = pd.read_csv('employees.csv', index_col='Id') # Set cell value at 5th row and 2nd column df.iloc[4 , 1] = 55 # Write DataFrame to CSV file df.to_csv('employees.csv')
The content of the employees.csv file mist be like this now,
Id,Name,Age,City,Experience a,John,49,London,15 b,Mark,44,New York,13 c,Joseph,48,Tokyo,14 d,Ritika,41,Delhi,11 e,Vinod,55,Mumbai,13 f,Saurav,51,Sydney,13 g,Lucy,52,Paris,13
The value of cell at [‘c’, ‘Age’] is now 56.
Summary:
We learned how to use Pandas to change a cell value in a CSV file.
Latest Video Tutorials