In this article, we will discuss different ways to get or select the first column of dataframe as a series or list object.
Table of Contents
- Use iloc[] to select first column of pandas dataframe.
- Use [] to select first column of pandas dataframe.
- Use head() to select first column of pandas dataframe.
- Get first column of pandas dataframe as list on python.
There are different ways to select the first column of this dataframe. Let’s discuss them one by one,
Use iloc[] to select first column of pandas dataframe
In Pandas, the Dataframe provides an attribute iloc[], to select a portion of the dataframe using position based indexing. This selected portion can be few columns or rows . We can use this attribute to select only first column of the dataframe. For example,
# Select first column of the dataframe as a series first_column = df.iloc[:, 0]
We selected a portion of dataframe as a series object, that included all rows, but only first column of the dataframe.
Frequently Asked:
How did it work?
The syntax of dataframe.iloc[] is like,
df.iloc[row_start:row_end , col_start, col_end]
Arguments:
- row_start: The row index/position from where it should start selection. Default is 0.
- row_end: The row index/position from where it should end the selection i.e. select till row_end-1. Default is till the last row of the dataframe.
- col_start: The column index/position from where it should start selection. Default is 0.
- col_end: The column index/position from where it should end the selection i.e. select till end-1. Default is till the last column of the dataframe.
It returns a portion of the dataframe that includes rows from row_start to row_end-1 and columns from col_start to col_end-1.
Latest Python - Video Tutorial
To select the first column of dataframe select from column index 0 till 1 i.e (:1) and select all rows using default values (:),
# Select first column of the dataframe as a dataframe first_column = df.iloc[: , :1]
We provided the range to select the columns from 0 position till 1 to select the first column, therefore it returned a dataframe. If you want to select the first column as a series object then just pass the 0 instead of range. For example,
# Select first column of the dataframe as a series first_column = df.iloc[:, 0]
Checkout complete example to select first column of dataframe using iloc,
import pandas as pd # List of Tuples empoyees = [('Jack', 34, 'Sydney', 5) , ('Riti', 31, 'Delhi' , 7) , ('Aadi', 16, 'London', 11) , ('Mark', 41, 'Delhi' , 12)] # Create a DataFrame object df = pd.DataFrame( empoyees, columns=['Name', 'Age', 'City', 'Experience']) print("Contents of the Dataframe : ") print(df) # Select first column of the dataframe as a dataframe object first_column = df.iloc[: , :1] print("First Column Of Dataframe: ") print(first_column) print("Type: " , type(first_column)) # Select first column of the dataframe as a series first_column = df.iloc[:, 0] print("First Column Of Dataframe: ") print(first_column) print("Type: " , type(first_column))
Output:
Contents of the Dataframe : Name Age City Experience 0 Jack 34 Sydney 5 1 Riti 31 Delhi 7 2 Aadi 16 London 11 3 Mark 41 Delhi 12 First Column Of Dataframe: Name 0 Jack 1 Riti 2 Aadi 3 Mark Type: <class 'pandas.core.frame.DataFrame'> First Column Of Dataframe: 0 Jack 1 Riti 2 Aadi 3 Mark Name: Name, dtype: object Type: <class 'pandas.core.series.Series'>
We selected the first column of dataframe.
Learn more,
Select first column of pandas dataframe using []
We can fetch the column names of dataframe as a sequence and then select the first column name. Then using that column name, we can select the first column of dataframe as a series object using subscript operator i.e. []. For example,
# Select first column of the dataframe first_column = df[df.columns[0]] print("First Column Of Dataframe: ") print(first_column) print("Type: " , type(first_column))
Output:
First Column Of Dataframe: 0 Jack 1 Riti 2 Aadi 3 Mark Name: Name, dtype: object Type: <class 'pandas.core.series.Series'>
Use head() to select the first column of pandas dataframe
We can use the dataframe.T attribute to get a transposed view of the dataframe and then call the head(1) function on that view to select the first row i.e. the first column of original dataframe. Then transpose back that series object to have the column contents as a dataframe object. For example,
# Select first column of the dataframe first_column = df.T.head(1).T print("First Column Of Dataframe: ") print(first_column) print("Type: " , type(first_column))
Output:
First Column Of Dataframe: Name 0 Jack 1 Riti 2 Aadi 3 Mark Type: <class 'pandas.core.frame.DataFrame'>
It returned the first column of dataframe as a dataframe object.
Pandas: Get first column of dataframe as list
Select the first column of dataframe as a series object using iloc[:, 0] and then call the tolist() function on the series object. It will return the first column of dataframe as a list object. For example,
# Select first Column first_column = df.iloc[:, 0].tolist() print("First Column Of Dataframe: ") print(first_column) print("Type: " , type(first_column))
Output:
First Column Of Dataframe: ['Jack', 'Riti', 'Aadi', 'Mark'] Type: <class 'list'>
It returned the first column of dataframe as a list.
Summary
We learned different ways to get the first column of a dataframe as a series or list object in python.
Latest Video Tutorials