In this article we will discuss how to count number of elements in a 1D, 2D & 3D Numpy array, also how to count number of rows & columns of a 2D numpy array and number of elements per axis in 3D numpy array.
Get the Dimensions of a Numpy array using ndarray.shape()
numpy.ndarray.shape
Python’s Numpy Module provides a function to get the dimensions of a Numpy array,
ndarray.shape
It returns the dimension of numpy array as tuple.
Let’s use this to get the shape or dimensions of a 2D & 1D numpy array i.e.
Get Dimensions of a 2D numpy array using ndarray.shape
Let’s create a 2D Numpy array i.e.
# Create a 2D Numpy array list of list arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]]) print('2D Numpy Array') print(arr2D)
Output:
Frequently Asked:
2D Numpy Array [[11 12 13 11] [21 22 23 24] [31 32 33 34]]
Get number of rows in this 2D numpy array i.e.
# get number of rows in 2D numpy array numOfRows = arr2D.shape[0] print('Number of Rows : ', numOfRows)
Output:
Number of Rows : 3
Get number of columns in this 2D numpy array,
# get number of columns in 2D numpy array numOfColumns = arr2D.shape[1] print('Number of Columns : ', numOfColumns)
Output:
Number of Columns : 4
Get total number of elements in this 2D numpy array,
print('Total Number of elements in 2D Numpy array : ', arr2D.shape[0] * arr2D.shape[1])
Output:
Total Number of elements in 2D Numpy array : 12
Get Dimensions of a 1D numpy array using ndarray.shape
Let’s create a 1D Numpy array i.e.
# Create a Numpy array from list of numbers arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])
Get number of elements of this 1D numpy array i.e.
print('Shape of 1D numpy array : ', arr.shape) print('length of 1D numpy array : ', arr.shape[0])
Output:
Shape of 1D numpy array : (8,) length of 1D numpy array : 8
Get the Dimensions of a Numpy array using numpy.shape()
Python’s Numpy module provides a function to get the number of elements in a Numpy array along axis i.e.
numpy.size(arr, axis=None)
Args: It accepts the numpy array and also the axis along which it needs to count the elements.If axis is not passed then returns the total number of arguments.
Returns: The number of elements along the passed axis.
Let’s use this to get the shape or dimensions of a 2D & 1D numpy array i.e.
Get Dimensions of a 2D numpy array using numpy.size()
Let’s create a 2D Numpy array i.e.
# Create a 2D Numpy array list of list arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]]) print('2D Numpy Array') print(arr2D)
Output:
2D Numpy Array [[11 12 13 11] [21 22 23 24] [31 32 33 34]]
Get number of rows and columns of this 2D numpy array:
# get number of rows in 2D numpy array numOfRows = np.size(arr2D, 0) # get number of columns in 2D numpy array numOfColumns = np.size(arr2D, 1) print('Number of Rows : ', numOfRows) print('Number of Columns : ', numOfColumns)
Output:
Number of Rows : 3 Number of Columns : 4
Get total number of elements in this 2D numpy array:
print('Total Number of elements in 2D Numpy array : ', np.size(arr2D))
Output:
Total Number of elements in 2D Numpy array : 12
Get Dimensions of a 3D numpy array using numpy.size()
Let’s create a 3D Numpy array i.e.
# Create a 3D Numpy array list of list of list arr3D = np.array([ [[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]], [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] ]) print(arr3D)
Output:
[[[11 12 13 11] [21 22 23 24] [31 32 33 34]] [[ 1 1 1 1] [ 2 2 2 2] [ 3 3 3 3]]]
Get number of elements per axis in 3D numpy array i.e.
print('Axis 0 size : ', np.size(arr3D, 0)) print('Axis 1 size : ', np.size(arr3D, 1)) print('Axis 2 size : ', np.size(arr3D, 2))
Output:
Axis 0 size : 2 Axis 1 size : 3 Axis 2 size : 4
Get total number of elements in this 3D numpy array i.e.
print('Total Number of elements in 3D Numpy array : ', np.size(arr3D))
Output:
Total Number of elements in 3D Numpy array : 24
Get Dimensions of a 1D numpy array using numpy.size()
Let’s create a 1D Numpy array i.e.
# Create a Numpy array from list of numbers arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])
Get number of elements of this 1D numpy array using numpy.size() i.e.
print('Length of 1D numpy array : ', np.size(arr))
Output:
Length of 1D numpy array : 8
Complete example is as follows:
import numpy as np def main(): print('**** Get Dimensions of a 2D numpy array using ndarray.shape ****') # Create a 2D Numpy array list of list arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]]) print('2D Numpy Array') print(arr2D) # get number of rows in 2D numpy array numOfRows = arr2D.shape[0] # get number of columns in 2D numpy array numOfColumns = arr2D.shape[1] print('Number of Rows : ', numOfRows) print('Number of Columns : ', numOfColumns) print('Total Number of elements in 2D Numpy array : ', arr2D.shape[0] * arr2D.shape[1]) print('**** Get Dimensions of a 1D numpy array using ndarray.shape ****') # Create a Numpy array from list of numbers arr = np.array([4, 5, 6, 7, 8, 9, 10, 11]) print('Original Array : ', arr) print('Shape of 1D numpy array : ', arr.shape) print('length of 1D numpy array : ', arr.shape[0]) print('**** Get Dimensions of a 2D numpy array using np.size() ****') # Create a 2D Numpy array list of list arr2D = np.array([[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]]) print('2D Numpy Array') print(arr2D) # get number of rows in 2D numpy array numOfRows = np.size(arr2D, 0) # get number of columns in 2D numpy array numOfColumns = np.size(arr2D, 1) print('Number of Rows : ', numOfRows) print('Number of Columns : ', numOfColumns) print('Total Number of elements in 2D Numpy array : ', np.size(arr2D)) print('**** Get Dimensions of a 3D numpy array using np.size() ****') # Create a 3D Numpy array list of list of list arr3D = np.array([ [[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]], [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] ]) print('3D Numpy Array') print(arr3D) print('Axis 0 size : ', np.size(arr3D, 0)) print('Axis 1 size : ', np.size(arr3D, 1)) print('Axis 2 size : ', np.size(arr3D, 2)) print('Total Number of elements in 3D Numpy array : ', np.size(arr3D)) print('Dimension by axis : ', arr3D.shape) print('**** Get Dimensions of a 1D numpy array using numpy.size() ****') # Create a Numpy array from list of numbers arr = np.array([4, 5, 6, 7, 8, 9, 10, 11]) print('Original Array : ', arr) print('Length of 1D numpy array : ', np.size(arr)) if __name__ == '__main__': main()
Output:
**** Get Dimensions of a 2D numpy array using ndarray.shape **** 2D Numpy Array [[11 12 13 11] [21 22 23 24] [31 32 33 34]] Number of Rows : 3 Number of Columns : 4 Total Number of elements in 2D Numpy array : 12 **** Get Dimensions of a 1D numpy array using ndarray.shape **** Original Array : [ 4 5 6 7 8 9 10 11] Shape of 1D numpy array : (8,) length of 1D numpy array : 8 **** Get Dimensions of a 2D numpy array using np.size() **** 2D Numpy Array [[11 12 13 11] [21 22 23 24] [31 32 33 34]] Number of Rows : 3 Number of Columns : 4 Total Number of elements in 2D Numpy array : 12 **** Get Dimensions of a 3D numpy array using np.size() **** 3D Numpy Array [[[11 12 13 11] [21 22 23 24] [31 32 33 34]] [[ 1 1 1 1] [ 2 2 2 2] [ 3 3 3 3]]] Axis 0 size : 2 Axis 1 size : 3 Axis 2 size : 4 Total Number of elements in 3D Numpy array : 24 Dimension by axis : (2, 3, 4) **** Get Dimensions of a 1D numpy array using numpy.size() **** Original Array : [ 4 5 6 7 8 9 10 11] Length of 1D numpy array : 8