How to get Numpy Array Dimensions using numpy.ndarray.shape & numpy.ndarray.size() in Python

In this article we will discuss how to count number of elements in a 1D, 2D & 3D Numpy array, also how to count number of rows & columns of a 2D numpy array and number of elements per axis in 3D numpy array.

Get the Dimensions of a Numpy array using ndarray.shape()

numpy.ndarray.shape

Python’s Numpy Module provides a function to get the dimensions of a Numpy array,

ndarray.shape

It returns the dimension of numpy array as tuple.

Let’s use this to get the shape or dimensions of a 2D & 1D numpy array i.e.

Get Dimensions of a 2D numpy array using ndarray.shape

Let’s create a 2D Numpy array i.e.

# Create a 2D Numpy array list of list
arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]])

print('2D Numpy Array')
print(arr2D)

Output:
2D Numpy Array
[[11 12 13 11]
 [21 22 23 24]
 [31 32 33 34]]

Get number of rows in this 2D numpy array i.e.
# get number of rows in 2D numpy array
numOfRows = arr2D.shape[0]

print('Number of Rows : ', numOfRows)

Output:
Number of Rows :  3

Get number of columns in this 2D numpy array,
# get number of columns in 2D numpy array
numOfColumns = arr2D.shape[1]

print('Number of Columns : ', numOfColumns)

Output:
Number of Columns :  4

Get total number of elements in this 2D numpy array,
print('Total Number of elements in 2D Numpy array : ', arr2D.shape[0] * arr2D.shape[1])

Output:
Total Number of elements in 2D Numpy array :  12

Advertisements

Get Dimensions of a 1D numpy array using ndarray.shape

Let’s create a 1D Numpy array i.e.

# Create a Numpy array from list of numbers
arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])

Get number of elements of this 1D numpy array i.e.
print('Shape of 1D numpy array : ', arr.shape)
print('length of 1D numpy array : ', arr.shape[0])

Output:
Shape of 1D numpy array :  (8,)
length of 1D numpy array :  8

Get the Dimensions of a Numpy array using numpy.shape()

Python’s Numpy module provides a function to get the number of elements in a Numpy array along axis i.e.

numpy.size(arr, axis=None)

Args: It accepts the numpy array and also the axis along which it needs to count the elements.If axis is not passed then returns the total number of arguments.
Returns: The number of elements along the passed axis.

Let’s use this to get the shape or dimensions of a 2D & 1D numpy array i.e.

Get Dimensions of a 2D numpy array using numpy.size()

Let’s create a 2D Numpy array i.e.

# Create a 2D Numpy array list of list
arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]])

print('2D Numpy Array')
print(arr2D)

Output:
2D Numpy Array
[[11 12 13 11]
 [21 22 23 24]
 [31 32 33 34]]

Get number of rows and columns of this 2D numpy array:
# get number of rows in 2D numpy array
numOfRows = np.size(arr2D, 0)

# get number of columns in 2D numpy array
numOfColumns = np.size(arr2D, 1)

print('Number of Rows : ', numOfRows)
print('Number of Columns : ', numOfColumns)

Output:
Number of Rows :  3
Number of Columns :  4

Get total number of elements in this 2D numpy array:
print('Total Number of elements in 2D Numpy array : ', np.size(arr2D))

Output:
Total Number of elements in 2D Numpy array :  12

Get Dimensions of a 3D numpy array using numpy.size()

Let’s create a 3D Numpy array i.e.

# Create a 3D Numpy array list of list of list
arr3D = np.array([ [[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]],
                 [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] ])

print(arr3D)

Output:
[[[11 12 13 11]
  [21 22 23 24]
  [31 32 33 34]]

 [[ 1  1  1  1]
  [ 2  2  2  2]
  [ 3  3  3  3]]]

Get number of elements per axis in 3D numpy array i.e.
print('Axis 0 size : ', np.size(arr3D, 0))
print('Axis 1 size : ', np.size(arr3D, 1))
print('Axis 2 size : ', np.size(arr3D, 2))

Output:
Axis 0 size :  2
Axis 1 size :  3
Axis 2 size :  4

Get total number of elements in this 3D numpy array i.e.
print('Total Number of elements in 3D Numpy array : ', np.size(arr3D))

Output:
Total Number of elements in 3D Numpy array :  24

Get Dimensions of a 1D numpy array using numpy.size()

Let’s create a 1D Numpy array i.e.

# Create a Numpy array from list of numbers
arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])

Get number of elements of this 1D numpy array using numpy.size() i.e.
print('Length of 1D numpy array : ', np.size(arr))

Output:
Length of 1D numpy array :  8

Complete example is as follows:
import numpy as np

def main():

  print('**** Get Dimensions of a 2D numpy array using ndarray.shape ****')

  # Create a 2D Numpy array list of list
  arr2D = np.array([[11 ,12,13,11], [21, 22, 23, 24], [31,32,33,34]])

  print('2D Numpy Array')
  print(arr2D)

  # get number of rows in 2D numpy array
  numOfRows = arr2D.shape[0]

  # get number of columns in 2D numpy array
  numOfColumns = arr2D.shape[1]

  print('Number of Rows : ', numOfRows)
  print('Number of Columns : ', numOfColumns)

  print('Total Number of elements in 2D Numpy array : ', arr2D.shape[0] * arr2D.shape[1])

  print('**** Get Dimensions of a 1D numpy array using ndarray.shape ****')

  # Create a Numpy array from list of numbers
  arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])

  print('Original Array : ', arr)

  print('Shape of 1D numpy array : ', arr.shape)
  print('length of 1D numpy array : ', arr.shape[0])

  print('**** Get Dimensions of a 2D numpy array using np.size() ****')

  # Create a 2D Numpy array list of list
  arr2D = np.array([[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]])

  print('2D Numpy Array')
  print(arr2D)

  # get number of rows in 2D numpy array
  numOfRows = np.size(arr2D, 0)

  # get number of columns in 2D numpy array
  numOfColumns = np.size(arr2D, 1)

  print('Number of Rows : ', numOfRows)
  print('Number of Columns : ', numOfColumns)

  print('Total Number of elements in 2D Numpy array : ', np.size(arr2D))

  print('**** Get Dimensions of a 3D numpy array using np.size() ****')

  # Create a 3D Numpy array list of list of list
  arr3D = np.array([ [[11, 12, 13, 11], [21, 22, 23, 24], [31, 32, 33, 34]],
                   [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]] ])

  print('3D Numpy Array')
  print(arr3D)

  print('Axis 0 size : ', np.size(arr3D, 0))
  print('Axis 1 size : ', np.size(arr3D, 1))
  print('Axis 2 size : ', np.size(arr3D, 2))

  print('Total Number of elements in 3D Numpy array : ', np.size(arr3D))

  print('Dimension by axis : ', arr3D.shape)

  print('**** Get Dimensions of a 1D numpy array using numpy.size() ****')

  # Create a Numpy array from list of numbers
  arr = np.array([4, 5, 6, 7, 8, 9, 10, 11])

  print('Original Array : ', arr)

  print('Length of 1D numpy array : ', np.size(arr))

if __name__ == '__main__':
  main()

Output:
**** Get Dimensions of a 2D numpy array using ndarray.shape ****
2D Numpy Array
[[11 12 13 11]
 [21 22 23 24]
 [31 32 33 34]]
Number of Rows :  3
Number of Columns :  4
Total Number of elements in 2D Numpy array :  12
**** Get Dimensions of a 1D numpy array using ndarray.shape ****
Original Array :  [ 4  5  6  7  8  9 10 11]
Shape of 1D numpy array :  (8,)
length of 1D numpy array :  8
**** Get Dimensions of a 2D numpy array using np.size() ****
2D Numpy Array
[[11 12 13 11]
 [21 22 23 24]
 [31 32 33 34]]
Number of Rows :  3
Number of Columns :  4
Total Number of elements in 2D Numpy array :  12
**** Get Dimensions of a 3D numpy array using np.size() ****
3D Numpy Array
[[[11 12 13 11]
  [21 22 23 24]
  [31 32 33 34]]

 [[ 1  1  1  1]
  [ 2  2  2  2]
  [ 3  3  3  3]]]
Axis 0 size :  2
Axis 1 size :  3
Axis 2 size :  4
Total Number of elements in 3D Numpy array :  24
Dimension by axis :  (2, 3, 4)
**** Get Dimensions of a 1D numpy array using numpy.size() ****
Original Array :  [ 4  5  6  7  8  9 10 11]
Length of 1D numpy array :  8

Pandas Tutorials -Learn Data Analysis with Python

   

Are you looking to make a career in Data Science with Python?

Data Science is the future, and the future is here now. Data Scientists are now the most sought-after professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.

Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.

Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.

Join a LinkedIn Community of Python Developers

Leave a Comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll to Top