In this article we will discuss how to find the minimum or smallest value in a Numpy array and it’s indices using numpy.amin().
numpy.amin()
Python’s numpy module provides a function to get the minimum value from a Numpy array i.e.
numpy.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)
Arguments :
- a : numpy array from which it needs to find the minimum value.
- axis : It’s optional and if not provided then it will flattened the passed numpy array and returns the min value in it.
- If it’s provided then it will return for array of min values along the axis i.e.
- If axis=0 then it returns an array containing min value for each columns.
- If axis=1 then it returns an array containing min value for each row.
Let’s look in detail,
Find minimum value & it’s index in a 1D Numpy Array:
Let’s create a 1D numpy array from a list i.e.
arr = numpy.array([11, 12, 13, 14, 15, 16, 17, 15, 11, 12, 14, 15, 16, 17])
Find minimum value:
Now let’s use numpy.amin() to find the minimum value from this numpy array by passing just array as argument i.e.
# Get the minimum element from a Numpy array minElement = numpy.amin(arr) print('Minimum element from Numpy Array : ', minElement)
Output:
Minimum element from Numpy Array : 11
It returns the minimum value from the passed numpy array i.e. 11
Find index of minimum value :
Get the array of indices of minimum value in numpy array using numpy.where() i.e.
# Get the indices of minimum element in numpy array result = numpy.where(arr == numpy.amin(arr)) print('Returned tuple of arrays :', result) print('List of Indices of minimum element :', result[0])
Output:
Returned result : (array([0, 8], dtype=int32),) List of Indices of minimum element : [0 8]
In numpy.where() when we pass the condition expression only then it returns a tuple of arrays (one for each axis) containing the indices of element that satisfies the given condition. As our numpy array has one axis only therefore returned tuple contained one array of indices.
Find minimum value & it’s index in a 2D Numpy Array
Let’s create a 2D numpy array i.e.
# Create a 2D Numpy array from list of lists arr2D = numpy.array([[11, 12, 13], [14, 15, 16], [17, 15, 11], [12, 14, 15]])
Contents of the 2D numpy array are,
[[11 12 13] [14 15 16] [17 15 11] [12 14 15]]
Find min value in complete 2D numpy array
To find minimum value from complete 2D numpy array we will not pass axis in numpy.amin() i.e.
# Get the minimum value from complete 2D numpy array minValue = numpy.amin(arr2D)
It will return the minimum value from complete 2D numpy arrays i.e. in all rows and columns.
11
Find min values along the axis in 2D numpy array | min in rows or columns:
If we pass axis=0 in numpy.amin() then it returns an array containing min value for each column i.e.
# Get the minimum values of each column i.e. along axis 0 minInColumns = numpy.amin(arr2D, axis=0) print('min value of every column: ', minInColumns)
Output:
min value of every column: [11 12 11]
If we pass axis = 1 in numpy.amin() then it returns an array containing min value for each row i.e.
# Get the minimum values of each row i.e. along axis 1 minInRows = numpy.amin(arr2D, axis=1) print('min value of every Row: ', minInRows)
Output:
min value of every Row: [11 14 11 12]
Find index of minimum value from 2D numpy array:
Contents of the 2D numpy array arr2D are,
[[11 12 13] [14 15 16] [17 15 11] [12 14 15]]
Let’s get the array of indices of minimum value in 2D numpy array i.e.
# Find index of minimum value from 2D numpy array result = numpy.where(arr2D == numpy.amin(arr2D)) print('Tuple of arrays returned : ', result) print('List of coordinates of minimum value in Numpy array : ') # zip the 2 arrays to get the exact coordinates listOfCordinates = list(zip(result[0], result[1])) # travese over the list of cordinates for cord in listOfCordinates: print(cord)
Output:
Tuple of arrays returned : (array([0, 2], dtype=int32), array([0, 2], dtype=int32)) List of coordinates of minimum value in Numpy array : (0, 0) (2, 2)
numpy.amin() & NaN
numpy.amin() propagates the NaN values i.e. if there is a NaN in the given numpy array then numpy.amin() will return NaN as minimum value. For example,
arr = numpy.array([11, 12, 13, 14, 15], dtype=float) arr[3] = numpy.NaN print('min element from Numpy Array : ', numpy.amin(arr))
Output:
min element from Numpy Array : nan
If you want to ignore the NaNs while finding the min values from numpy then use numpy.nanmin() instead.
Complete example is as follows,
import numpy def main(): # Create a Numpy array from a list arr = numpy.array([11, 12, 13, 14, 15, 16, 17, 15, 11, 12, 14, 15, 16, 17]) print('Contents of Numpy array : ', arr, sep='\n') print("*** Get minimum element from a 1D numpy array***") # Get the minimum element from a Numpy array minElement = numpy.amin(arr) print('min element from Numpy Array : ', minElement) print("*** Get the indices of minimum element from a 1D numpy array***") # Get the indices of minimum element in numpy array result = numpy.where(arr == numpy.amin(arr)) print('Returned result :', result) print('List of Indices of minimum element :', result[0]) print("*** Get minimum element from a 2D numpy array***") # Create a 2D Numpy array from list of lists arr2D = numpy.array([[11, 12, 13], [14, 15, 16], [17, 15, 11], [12, 14, 15]]) print('Contents of 2D Numpy Array', arr2D, sep='\n') # Get the minimum value from complete 2D numpy array minValue = numpy.amin(arr2D) print('min value from complete 2D array : ', minValue) # Get the minimum values of each column i.e. along axis 0 minInColumns = numpy.amin(arr2D, axis=0) print('min value of every column: ', minInColumns) # Get the minimum values of each row i.e. along axis 1 minInRows = numpy.amin(arr2D, axis=1) print('min value of every Row: ', minInRows) print('*** Get the index of minimum value in 2D numpy array ***') # Find index of minimum value from 2D numpy array result = numpy.where(arr2D == numpy.amin(arr2D)) print('Tuple of arrays returned : ', result) print('List of coordinates of minimum value in Numpy array : ') # zip the 2 arrays to get the exact coordinates listOfCordinates = list(zip(result[0], result[1])) # travese over the list of cordinates for cord in listOfCordinates: print(cord) print('*** numpy.amin() & NaN ***') arr = numpy.array([11, 12, 13, 14, 15], dtype=float) arr[3] = numpy.NaN print('min element from Numpy Array : ', numpy.amin(arr)) if __name__ == '__main__': main()
Output
Contents of Numpy array : [11 12 13 14 15 16 17 15 11 12 14 15 16 17] *** Get minimum element from a 1D numpy array*** min element from Numpy Array : 11 *** Get the indices of minimum element from a 1D numpy array*** Returned result : (array([0, 8], dtype=int32),) List of Indices of minimum element : [0 8] *** Get minimum element from a 2D numpy array*** Contents of 2D Numpy Array [[11 12 13] [14 15 16] [17 15 11] [12 14 15]] min value from complete 2D array : 11 min value of every column: [11 12 11] min value of every Row: [11 14 11 12] *** Get the index of minimum value in 2D numpy array *** Tuple of arrays returned : (array([0, 2], dtype=int32), array([0, 2], dtype=int32)) List of coordinates of minimum value in Numpy array : (0, 0) (2, 2) *** numpy.amin() & NaN *** min element from Numpy Array : nan
Pandas Tutorials -Learn Data Analysis with Python
-
Pandas Tutorial Part #1 - Introduction to Data Analysis with Python
-
Pandas Tutorial Part #2 - Basics of Pandas Series
-
Pandas Tutorial Part #3 - Get & Set Series values
-
Pandas Tutorial Part #4 - Attributes & methods of Pandas Series
-
Pandas Tutorial Part #5 - Add or Remove Pandas Series elements
-
Pandas Tutorial Part #6 - Introduction to DataFrame
-
Pandas Tutorial Part #7 - DataFrame.loc[] - Select Rows / Columns by Indexing
-
Pandas Tutorial Part #8 - DataFrame.iloc[] - Select Rows / Columns by Label Names
-
Pandas Tutorial Part #9 - Filter DataFrame Rows
-
Pandas Tutorial Part #10 - Add/Remove DataFrame Rows & Columns
-
Pandas Tutorial Part #11 - DataFrame attributes & methods
-
Pandas Tutorial Part #12 - Handling Missing Data or NaN values
-
Pandas Tutorial Part #13 - Iterate over Rows & Columns of DataFrame
-
Pandas Tutorial Part #14 - Sorting DataFrame by Rows or Columns
-
Pandas Tutorial Part #15 - Merging or Concatenating DataFrames
-
Pandas Tutorial Part #16 - DataFrame GroupBy explained with examples
Are you looking to make a career in Data Science with Python?
Data Science is the future, and the future is here now. Data Scientists are now the most sought-after professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.
Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.
Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.