In this article we will discuss how to create a Numpy array of evenly spaced numbers over a given interval using numpy.arrange().
numpy.arrange()
Python’s numpy module provides a function to create an Numpy Array of evenly space elements within a given interval i.e.
numpy.arange([start, ]stop, [step, ]dtype=None)
Arguments:
 start : It’s the start value of range.
 It’s optional, if not provided default value be 0.
 stop : End Value of range, array.
 It doesn’t include this value but it’s an end marker
 step : Spacing between two adjacent values.
 It’s optional, if not provided default value be 1.
 dtype : Data type of elements.
 If not provided will be deduced from other arguments.
This function returns an evenly spaced array of numbers from range start to stop 1 with equal intervals of step.
To use Numpy in our code we need to import following module i.e.
import numpy as np
Checkout some examples,
Example 1:
Create a Numpy Array containing numbers from 5 to 30 but at equal interval of 2
Here, start of Interval is 5, Stop is 30 and Step is 2 i.e.
import numpy as np # Start = 5, Stop = 30, Step Size = 2 arr = np.arange(5, 30, 2) print(arr)
It will return a Numpy array with following contents,
[ 5 7 9 11 13 15 17 19 21 23 25 27 29]
Example 2:
Create a Numpy Array containing elements from 1 to 10 with default interval i.e. 1
As step argument is option, so when it is not provided then it’s default value will be 1. Let’s create a Numpy array from where start of interval is 5, Stop of interval is 30 and step size is default i.e 1 ,
import numpy as np # Start = 1, Stop = 10. As Step Size is not provided, so default value be 1 arr = np.arange(1, 10) print(arr)
It will return a Numpy array with following contents,
[1 2 3 4 5 6 7 8 9]
Example 3:
Create a Numpy Array containing elements up to 20 with default start and step size
As start & step arguments are optional, so when we don’t provide these arguments then there default value will be 0 & 1.
Let’s create a Numpy array with default start & step arguments, stop of interval is 20 i.e.
import numpy as np # Stop = 20. As Start and Step Size is not provided, so default value be 0 and 1 respectively arr = np.arange(20) print(arr)
It will return a Numpy array with following contents,
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
Complete example is as follows,
import numpy as np def main(): print('*** Create numpy array using numpy.arange() ***') print('Create a Numpy Array containing elements from 5 to 30 but at equal interval of 2') # Start = 5, Stop = 30, Step Size = 2 arr = np.arange(5, 30, 2) print('Contents of the Array : ', arr) print('Create a Numpy Array containing elements from 1 to 10 with default interval i.e. 1') # Start = 1, Stop = 10. As Step Size is not provided, so default value be 1 arr = np.arange(1, 10) print('Contents of the Array : ', arr) print('Create a Numpy Array containing elements up to 10 with default start and default step size') # Stop = 20. As Start & Step Size is not provided, so default value be 0 & 1 respectively arr = np.arange(20) print('Contents of the Array : ', arr) if __name__ == '__main__': main()
Output:
*** Create numpy array using numpy.arange() *** Create a Numpy Array containing elements from 5 to 30 but at equal interval of 2 Contents of the Array : [ 5 7 9 11 13 15 17 19 21 23 25 27 29] Create a Numpy Array containing elements from 1 to 10 with default interval i.e. 1 Contents of the Array : [1 2 3 4 5 6 7 8 9] Create a Numpy Array containing elements up to 10 with default start and default step size Contents of the Array : [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
Pandas Tutorials Learn Data Analysis with Python

Pandas Tutorial Part #1  Introduction to Data Analysis with Python

Pandas Tutorial Part #2  Basics of Pandas Series

Pandas Tutorial Part #3  Get & Set Series values

Pandas Tutorial Part #4  Attributes & methods of Pandas Series

Pandas Tutorial Part #5  Add or Remove Pandas Series elements

Pandas Tutorial Part #6  Introduction to DataFrame

Pandas Tutorial Part #7  DataFrame.loc[]  Select Rows / Columns by Indexing

Pandas Tutorial Part #8  DataFrame.iloc[]  Select Rows / Columns by Label Names

Pandas Tutorial Part #9  Filter DataFrame Rows

Pandas Tutorial Part #10  Add/Remove DataFrame Rows & Columns

Pandas Tutorial Part #11  DataFrame attributes & methods

Pandas Tutorial Part #12  Handling Missing Data or NaN values

Pandas Tutorial Part #13  Iterate over Rows & Columns of DataFrame

Pandas Tutorial Part #14  Sorting DataFrame by Rows or Columns

Pandas Tutorial Part #15  Merging or Concatenating DataFrames

Pandas Tutorial Part #16  DataFrame GroupBy explained with examples
Are you looking to make a career in Data Science with Python?
Data Science is the future, and the future is here now. Data Scientists are now the most soughtafter professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.
Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.
Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.