In this article we will discuss how to create a Numpy Array from a sequence like list or tuple etc. Also, how to create a 2D numpy Numpy Array from nested sequence like lists of lists.
To install the python’s numpy module on you system use following command,
pip install numpy
To use numpy module we need to import it i.e.
import numpy as np
numpy.array()
Python’s Numpy module provides a function numpy.array() to create a Numpy Array from an another array like object in python like list or tuple etc or any nested sequence like list of list,
numpy.array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
Arguments:
 object is an array like object i.e. list or tuple or any nested sequence like list of list.
 dtype: (Optional) Data type of elements
 Other parameters are optional and has default values.
Returns:
 It returns a Numpy Array .
Let’s use this numpy.array() to create Numpy Array objects,
Create Numpy Array from a list
To create a Numpy Array from list just pass the list object to numpy.array() i.e.
# Create ndArray from a list npArray = np.array([1,2,3,4,5,6,7,8,9]) print('Contents of the ndArray : ') print(npArray)
Output:
[1 2 3 4 5 6 7 8 9]
Read More,
 How to convert a NumPy array to a list in python?
 How to convert 2D NumPy array to list of lists in python?
 How to convert a 2D Array to a 1D Array?
 How to convert a 1D array to a 2D array in python?
Create Numpy Array from a tuple
Similar to above example, we can directly pass the tuple to the numpy.array() to create a Numpy Array object,
# Create ndArray from a tuple npArray = np.array( (11,22,33,44,55,66,77,88 ) ) print('Contents of the ndArray : ') print(npArray)
Output:
Contents of the ndArray : [11 22 33 44 55 66 77 88]
Related Queries:
 How to create a NumPy Array from a range of Numbers?
 How to create a NumPy Array of zeros (0’s) ?
 How to create Numpy Array of ones (1’s)?
Check type of Numpy Array object
We can also check the type of the created Numpy Array using type() function i.e.
type(npArrObject)
Example:
npArray = np.array( (11,22,33,44,55,66,77,88 ) ) print(type(npArray))
Output
<class 'numpy.ndarray'>
Check the data type of elements in Numpy Array
Numpy array Numpy Array has a member variable that tells about the datatype of elements in it i.e. ndarray.dtype.
We created the Numpy Array from the list or tuple. While creation numpy.array() will deduce the data type of the elements based on input passed.
But we can check the data type of Numpy Array elements i.e.
print('Data Type of elements in ndArray : ') npArray = np.array((11, 22, 33, 44, 55, 66, 77, 88)) print(npArray.dtype)
Output:
int32
Create 2D Numpy Array from a list of list
Suppose we want to create 2D Numpy Array like Matrix, we can do that by passing a nested sequence in numpy.array() i.e. list of list.
For example,
# Create 2D ndarray form list of list npArray = np.array( [ [77, 88, 99] , [31,42,63] , [11,22,33]]) print('Contents of the ndArray : ') print(npArray)
Output:
[[77 88 99] [31 42 63] [11 22 33]]
Create 1D Numpy Array from list of list
On passing a list of list to numpy.array() will create a 2D Numpy Array by default. But if we want to create a 1D numpy array from list of list then we need to merge lists of lists to a single list and then pass it to numpy.array() i.e.
listOfLists = [[77, 88, 99], [31, 42, 63], [11, 22, 33]] # Create one dimension ndArray from a list of lists npArray = np.array([ elem for singleList in listOfLists for elem in singleList]) print('Contents of the ndArray : ') print(npArray)
Output:
Contents of the ndArray : [77 88 99 31 42 63 11 22 33]
Create a Numpy Array from a list with different data type
We can also pass the dtype as parameter in numpy.array(). In that case numpy.array() will not deduce the data type from passed elements, it convert them to passed data type.
For example pass the dtype as float with list of int i.e.
# Create ndArray of float datatype from a list of int npArray = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9] , dtype=float) print('Contents of the ndArray : ', npArray) print('Type of the ndArray : ', npArray.dtype)
Output:
Contents of the ndArray : [1. 2. 3. 4. 5. 6. 7. 8. 9.] Type of the ndArray : float64
Pandas Tutorials Learn Data Analysis with Python

Pandas Tutorial Part #1  Introduction to Data Analysis with Python

Pandas Tutorial Part #2  Basics of Pandas Series

Pandas Tutorial Part #3  Get & Set Series values

Pandas Tutorial Part #4  Attributes & methods of Pandas Series

Pandas Tutorial Part #5  Add or Remove Pandas Series elements

Pandas Tutorial Part #6  Introduction to DataFrame

Pandas Tutorial Part #7  DataFrame.loc[]  Select Rows / Columns by Indexing

Pandas Tutorial Part #8  DataFrame.iloc[]  Select Rows / Columns by Label Names

Pandas Tutorial Part #9  Filter DataFrame Rows

Pandas Tutorial Part #10  Add/Remove DataFrame Rows & Columns

Pandas Tutorial Part #11  DataFrame attributes & methods

Pandas Tutorial Part #12  Handling Missing Data or NaN values

Pandas Tutorial Part #13  Iterate over Rows & Columns of DataFrame

Pandas Tutorial Part #14  Sorting DataFrame by Rows or Columns

Pandas Tutorial Part #15  Merging or Concatenating DataFrames

Pandas Tutorial Part #16  DataFrame GroupBy explained with examples
Are you looking to make a career in Data Science with Python?
Data Science is the future, and the future is here now. Data Scientists are now the most soughtafter professionals today. To become a good Data Scientist or to make a career switch in Data Science one must possess the right skill set. We have curated a list of Best Professional Certificate in Data Science with Python. These courses will teach you the programming tools for Data Science like Pandas, NumPy, Matplotlib, Seaborn and how to use these libraries to implement Machine learning models.
Checkout the Detailed Review of Best Professional Certificate in Data Science with Python.
Remember, Data Science requires a lot of patience, persistence, and practice. So, start learning today.