In this article we will discuss how to read a CSV file with different type of delimiters to a Dataframe.
Python’s Pandas library provides a function to load a csv file to a Dataframe i.e.
pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, ....)
It reads the content of a csv file at given path, then loads the content to a Dataframe and returns that. It uses comma (,) as default delimiter or separator while parsing a file. But we can also specify our custom separator or a regular expression to be used as custom separator.
To use pandas.read_csv() import pandas module i.e.
Frequently Asked:
import pandas as pd
Using read_csv() with custom delimiter
Suppose we have a file ‘users.csv‘ in which columns are separated by string ‘__’ like this.
Contents of file users.csv are as follows,
Name__Age__City jack__34__Sydeny Riti__31__Delhi Aadi__16__New York Suse__32__Lucknow Mark__33__Las vegas Suri__35__Patna
Now to load this kind of file to a dataframe object using pandas.read_csv() we have to pass the sep & engine arguments to pandas.read_csv() i.e.
# Read a csv file to a dataframe with custom delimiter usersDf = pd.read_csv('users.csv', sep='__' , engine='python') print('Contents of Dataframe : ') print(usersDf)
Output:
Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi 2 Aadi 16 New York 3 Suse 32 Lucknow 4 Mark 33 Las vegas 5 Suri 35 Patna
Here, sep argument will be used as separator or delimiter. If sep argument is not specified then default engine for parsing ( C Engine) will be used which uses ‘,’ as delimiter. So, while specifying the custom sep argument we must specify the engine argument as ‘python’, otherwise we will get warning like this,
Latest Python - Video Tutorial
ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex);
You can avoid this warning by specifying engine=’python’.
Using read_csv() with white space or tab as delimiter
As we have seen in above example, that we can pass custom delimiters. Now suppose we have a file in which columns are separated by either white space or tab i.e.
Contents of file users_4.csv are,
Name Age City jack 34 Sydeny Riti 31 Delhi
Now, to load this kind of file to dataframe with pandas.read_csv() pass ‘\s+’ as separator. Here \s+ means any one or more white space character.
# Read a csv file to a dataframe with delimiter as space or tab usersDf = pd.read_csv('users_4.csv', sep='\s+', engine='python') print('Contents of Dataframe : ') print(usersDf)
Contents of the dataframe returned are,
*** Using pandas.read_csv() with space or tab as delimiters *** Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi
Using read_csv() with regular expression for delimiters
Suppose we have a file where multiple char delimiters are used instead of a single one. Like,
Contents of file users_5.csv are,
Name,Age|City jack,34_Sydeny Riti:31,Delhi Aadi,16:New York Suse,32:Lucknow Mark,33,Las vegas Suri,35:Patna
Now, to load this kind of file to dataframe with read_csv() pass a regular expression i.e. ‘[:,|_]’ in sep argument. This regular expression means use any of these characters ( , : | ) asa delimiter or separator i.e.
# Read a csv file to a dataframe with multiple delimiters in regular expression usersDf = pd.read_csv('users_5.csv', sep='[:,|_]', engine='python') print('Contents of Dataframe : ') print(usersDf)
Output:
Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi 2 Aadi 16 New York 3 Suse 32 Lucknow 4 Mark 33 Las vegas 5 Suri 35 Patna
Complete example is as follows:
import pandas as pd def main(): print(' *** Using pandas.read_csv() with Custom delimiter ***') # Read a csv file to a dataframe with custom delimiter usersDf = pd.read_csv('users_3.csv', sep='__' , engine='python') print('Contents of Dataframe : ') print(usersDf) print('********') print(' *** Using pandas.read_csv() with space or tab as delimiters ***') # Read a csv file to a dataframe with delimiter as space or tab usersDf = pd.read_csv('users_4.csv', sep='\s+', engine='python') print('Contents of Dataframe : ') print(usersDf) print(' *** Using pandas.read_csv() with multiple char delimiters ***') # Read a csv file to a dataframe with multiple delimiters in regular expression usersDf = pd.read_csv('users_5.csv', sep='[:,|_]', engine='python') print('Contents of Dataframe : ') print(usersDf) if __name__ == '__main__': main()
Output:
*** Using pandas.read_csv() with Custom delimiter *** Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi 2 Aadi 16 New York 3 Suse 32 Lucknow 4 Mark 33 Las vegas 5 Suri 35 Patna ******** *** Using pandas.read_csv() with space or tab as delimiters *** Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi *** Using pandas.read_csv() with multiple char delimiters *** Contents of Dataframe : Name Age City 0 jack 34 Sydeny 1 Riti 31 Delhi 2 Aadi 16 New York 3 Suse 32 Lucknow 4 Mark 33 Las vegas 5 Suri 35 Patna
Latest Video Tutorials