In this article, we will discuss how to use numpy.insert() to insert elements in between other elements in a numpy array.

Table of Contents

- Overview of numpy.insert()
- Insert an element into a NumPy array at a given index position.
- Insert multiple elements into a NumPy array at the given index.
- Insert multiple elements at multiple indices in a NumPy array.
- Insert a row into a 2D Numpy array.
- Insert a column into a 2D Numpy array.

## Overview of numpy.insert()

In Python, Numpy Library provides a function to insert elements in a numpy array,

numpy.insert(arr, index, values, axis=None)

**Arguments:**

**arr**: array_like object- The input array

**index**: int, slice or sequence of ints- The index position or multiple indices before which values needs to be inserted.

**values**: array_like object- Values that need to be inserted into array arr.
- If the type of the values provided are different from that of arr, then values are converted to the type of arr.

- Values that need to be inserted into array arr.
**axis**: int, optional- Then axis along which values need to be inserted.
- If axis is None, then arr is flattened first and then values are inserted at given position.
- If axis is 0, then values will be inserted row wise in array arr.
- If axis is 0, then values will be inserted column wise in array arr.

- Then axis along which values need to be inserted.

**Returns**

**out**: ndarray- A copy of arr with given values inserted ar given indices.
- If axis is None, then it returns a flattened array.
- If axis is 1, then insert column-wise.
- If axis is 0, then insert row-wise.

- It does not modifies the original array, instead it returns a copy of given array with inserted values.

- A copy of arr with given values inserted ar given indices.

Let’s understand with some examples,

## Insert an element into a NumPy array at a given index position

Suppose we have a NumPy Array of integers and we want to insert an element 10 ath the index position 2. For that we will call the insert() with array, index position and element to be inserted,

### Frequently Asked:

- Python: numpy.ravel() function Tutorial with examples
- np.ones() – Create 1D / 2D Numpy Array filled with ones (1’s)
- Remove Elements From a NumPy Array Based on a Mask
- NumPy Array Attributes

import numpy as np # Create a Numpy Array of integers arr = np.array([11, 18, 6, 7, 1]) # Insert an element 10 at index position 2 new_arr = np.insert(arr, 2, 10) print('New Array: ', new_arr) print('Original Array: ', arr)

Output:

New Array: [11 18 10 6 7 1] Original Array: [11 18 6 7 1]

It returned a new array with element 10 inserted at the index position 2. The original array is not modified.

## Insert multiple elements into a NumPy array at the given index

To insert multiple elements in a numpy array, pass the elements as a sequence along with the index position, to the insert() function. For example,

import numpy as np # Create a Numpy Array of integers arr = np.array([11, 18, 6, 7, 1]) # Insert three element at index position 2 new_arr = np.insert(arr, 2, (5, 5, 5)) print('New Array: ', new_arr)

Output:

New Array: [11 18 5 5 5 6 7 1]

It inserted three elements i.e. 5, 5, & 5 at the index position 2.

## Insert multiple elements at multiple indices in a NumPy array

In this previous example, we inserted three elements at a given index position. But what if we want to insert three different elements at three different index position like,

- Insert 22 at index 1.
- Insert 33 at index 2.
- Insert 44 at index 3.

For this we need to pass the index positions as a sequence along with values sequence,

import numpy as np # Create a Numpy Array of integers arr = np.array([11, 18, 6, 7, 1]) # Insert three element index position 1, 2 and 3 new_arr = np.insert(arr, (1,2,3), (22, 33, 44)) print('New Array: ', new_arr)

Output:

New Array: [11 22 18 33 6 44 7 1]

It inserted three elements and three different places in the numpy array.

## Insert a row into a 2D Numpy array

To insert a row in 2D Numpy Array we need to pass the axis as 0 and the values as a sequence. For example, let’s try to insert a row at index 1 in a 2D Numpy Array,

import numpy as np # Create 2D Numpy array of hard coded numbers arr = np.array([[1, 2, 3], [5, 6, 7], [3, 3, 3]]) # Insert a row at index 1 new_arr = np.insert(arr, 1, (5, 5, 5), axis=0) print(new_arr)

Output:

[[1 2 3] [5 5 5] [5 6 7] [3 3 3]]

It inserted the row at index 1.

We passed the row values as sequence, but you can also pass the values in different shape. If values are of different shape, then it will make them of required shape. For example,

import numpy as np # Create 2D Numpy array of hard coded numbers arr = np.array([[1, 2, 3], [5, 6, 7], [3, 3, 3]]) # Insert a row at index 1 new_arr = np.insert(arr, 1, 5, axis=0) print(new_arr)

Output:

[[1 2 3] [5 5 5] [5 6 7] [3 3 3]]

It inserted the row at index 1.

## Insert a column into a 2D Numpy array

To insert a column in 2D Numpy Array we need to pass the axis as 1 and the values as a sequence. For example, let’s try to insert a column at index 1 in a 2D Numpy Array,

import numpy as np # Create 2D Numpy array of hard coded numbers arr = np.array([[1, 2, 3], [5, 6, 7], [3, 3, 3]]) # Insert a column at index 1 new_arr = np.insert(arr, 1, (5, 5, 5), axis=1) print(new_arr)

Output:

[[1 5 2 3] [5 5 6 7] [3 5 3 3]]

It inserted the column at index 1.

We passed the column values as sequence, but you can also pass the values in different shape. If values are of different shape, then it will make them of required shape. For example,

import numpy as np # Create 2D Numpy array of hard coded numbers arr = np.array([[1, 2, 3], [5, 6, 7], [3, 3, 3]]) # Insert a column at index 1 new_arr = np.insert(arr, 1, 5, axis=1) print(new_arr)

Output:

[[1 5 2 3] [5 5 6 7] [3 5 3 3]]